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Abstract
Recently it was shown that the area A and the angular momentum J of
any apparent horizon on a maximal, axisymmetric and asymptotically flat
Cauchy hyper-surface of a vacuum space-time satisfy necessarily the universal
inequality A ! 8π |J|. We show here that the equality A = 8π |J| is never
attained. We study too the global structure of data sets having surfaces with
A = 8π |J|. This lead us to prove the rigidity of the extreme Kerr-throats and
to investigate the important phenomenon of formation of extreme Kerr-throats
along sequences of data sets.
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1. Introduction

The celebrated Penrose singularity theorem asserts (in particular) that when a trapped surface is
present in an asymptotically flat Cauchy hyper-surface of a given globally hyperbolic vacuum
space-time then such space-time is necessarily null geodesically incomplete [13]. Because
of this and other facts, trapped surfaces are usually associated to the emergence of black
holes and are therefore central objects of study in general relativity. Keeping this in mind let
us concentrate in axisymmetric and asymptotically flat vacuum space-times and in maximal
axisymmetric Cauchy hyper-surfaces. Moreover suppose that over the Cauchy hyper-surface
there is a trapped surface and that it is isotopic to the sphere at ‘infinity’ over one of the
possibly many ends as is depicted in figure 1. In this scenario the boundary of the trapped
region in the hyper-surface is known to be a stable marginally outer trapped surface, called
the apparent horizon, which in turn is usually interpreted as a quasi-localization of the event
horizon [3]. On the other hand in axisymmetry every (embedded, orientable, compact and
boundary-less1) surface has associated its Komar angular momentum J(S) that depends only
on the homology class of the surface (see section 2.2). In particular the angular momentum of

1 These will be common assumptions.
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Figure 1. Two possible configurations of topological black holes with the horizons
marked with a S. On the left there is only one asymptotically flat end E1, while on
the right there are two, E1 and E2. Described are also large convex spheres on every
asymptotically flat end. The horizon on the left has zero angular momentum because it
encloses a compact boundary. The other surface shown on the left as well as the horizon
shown on the right can have a priori non-zero angular momentum.

the apparent horizon coincides with that of the respective asymptotically flat end. Moreover
as was shown in [9] the universal inequality

A(S) ! 8π |J(S)|, (1)

holds between the area A(S) of any embedded surface S and its angular momentum J(S). It
is concluded then that the area of the apparent horizon is always greater or equal than 8π

times the angular momentum of the respective asymptotically flat end. In this paper we show
that apparent horizons saturating the inequality (1), namely with A = 8π |J|, cannot exist in
maximal, axisymmetric and asymptotically flat vacuum data sets (theorem 1 and corollary 1).
But we also investigate what occurs to the geometry of this type of data sets around apparent
horizons nearly saturating (1) (corollary 2). This is closely related to analyzing the global
structure of data sets (of a different global type) admitting a surface saturating (1) and that we
investigate in theorem 2. As we will see the quest has deep theoretical implications. We will
be explaining all this in full detail in the discussion below.

Most of the discussions in this paper are centered around the notions of extreme Kerr-
throat and extreme Kerr-throat sphere. To begin explaining these notions let us consider the
family of the Kerr-solutions in the Boyer–Lindquist coordinates

g = −
[
" − a2 sin2 θ

$

]
dt2 − a sin2 θ (r2 + a2 − ")

$
(dt dϕ + dϕ dt)

+
[

(r2 + a2)2 − "a2 sin2 θ

$

]
sin2 θ dϕ2 + $

"
dr2 + $ dθ2, (2)

where here $ = r2 + a2 cos2 θ , " = r2 + a2 − 2mr,and a = J/m. The family is parametrized
by the mass m and the angular momentum J. The Kerr black holes correspond to the range of
parameters m2 ! |J| while the extreme Kerr black holes correspond to the case when m2 = |J|
(i.e. a2 = m2). Note that in this last case we have " = (r − m)2, r > m. Let us restrict the
attention to the maximal slice {t = 0}. Over this slice the extreme Kerr solutions have one
asymptotically flat end (when r ↑ ∞) and one cylindrical end (when r ↓ m). These ends are
depicted in figure 2. The cylinder possesses asymptotically a well defined smooth (i.e. C∞)
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Figure 2. The Penrose diagrams of the Kerr solutions (left-top) and extreme Kerr
solutions (left-bottom). On their right are represented the geometries of the initial data
over the hypersurfaces {t = 0}.

data (S2 × R; gT , KT ) indexed here with a T from ‘Throat’ and called the extreme Kerr-throat
of angular momentum |J| (or of mass m =

√
|J|). The explicit form of the data is

gT =
(

4|J| sin2 θ

1 + cos2 θ

)
dϕ2 + |J|(1 + cos2 θ ) dθ2 + |J|(1 + cos2 θ ) dr̃2, (3)

KT =
(

2
√

|J| sin2 θ

(1 + cos2 θ )
3
2

)
(dϕ dr̃ + dr̃ dϕ). (4)

The vector field ∂r̃ is a Killing field and |∂r̃|2 = |J|(1 + cos2 θ ). Therefore ∂r̃ = αT ς where
αT :=

√
|J|(1 + cos2 θ ) and ς is a unit field normal to the spheres of constant r̃. The function

αT , which depends on
√

|J|, will play a fundamental role later on. Note that the data of the
extreme Kerr-throats are parametrized by their angular momentum |J| which plays the role
of a global scale factor. The spheres of constant r̃ are called extreme Kerr-throat spheres of
area A = 8π |J| (or of mass m =

√
A/8π ). They are totally geodesic, i.e. as surfaces in ($; g)

have zero second fundamental form, and are in particular minimal. Moreover they are stable
minimal and the second variation of the area is non-negative and zero if and only if it is in a
direction proportional to ∂r̃ = αT ς (i.e. ∂r̄ up to a non-zero factor). The induced two-metric is

hT =
(

4|J| sin2 θ

1 + cos2 θ

)

dϕ2 + |J|(1 + cos2 θ ) dθ2, (5)

and in the basis {∂θ , ∂ϕ, ς} the only non-zero components of KT are

KT (∂ϕ, ς ) = KT (ς , ∂ϕ ) = 2 sin2 θ

(1 + cos2 θ )2
. (6)

In this setup, an axisymmetric sphere S of area A(S) = 8π |J(S)| embedded in a data ($; g, K)

is said to be an extreme Kerr-throat sphere if (i) it is totally geodesic in ($; g), (ii) the induced
metric expressed in areal-coordinates (θ ,ϕ) (see section 2.4) is given by (5) and if (iii) in the
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basis {∂θ , ∂ϕ, ς}, where ς is a unit-normal to SH in $, the only non-zero components of K are
K(∂ϕ, ς ) = K(ς , ∂ϕ ) and given by (6).

A fundamental result proved in [9] and which is the basis to prove the universal inequality
(1) says that any stable and axisymmetric minimal surface with A = 8π |J| and embedded in
a maximal and axisymmetric vacuum data set ($; g, K) is necessarily an extreme Kerr-throat
sphere regardless of the global nature of the data set in which it is embedded like completeness
or asymptotic flatness. We will use this result very often.

Observe that if the equality in (1) were reached in some surface S inside an axisymmetric,
maximal and asymptotically flat vacuum data set then such surface would have to be minimal
and stable because the angular momentum of a surface depends only on its homology class2.
As a result such surface would have to be an extreme Kerr-throat sphere.

There is a worth mentioning interpretation for the surfaces S saturating (1) in terms of
the well known thermodynamical heuristic from which we borrowed the terminology ‘zero
temperature black hole’ that we used in the title. To explain this observe that non extremal
Kerr black holes have a horizon in the slice {t = 0} of positive ‘temperature’

T =
1 −

( 8πJ
A

)2

√
A

4π
+ 16πJ2

A

, (7)

while the extremal Kerr black holes have an ‘asymptotic’ horizon of zero ‘temperature’ because
A = 8π |J|. If we import (7) as a raw definition for the temperature of an embedded surface
then according to what was said before surfaces of zero temperature in vacuum axisymmetric
and asymptotically flat data sets would be simply extreme Kerr-throat spheres of a particular
area. In the context of the present discussion it is thus pertinent to ask whether zero temperature
apparent horizons can arise in this type of data set or if on the contrary they cannot, but could
arise as in the extreme Kerr solutions only as asymptotic horizons on cylindrical ends of data
sets. The present paper investigates such situation and further related topics.

Our first result, theorem 1, shows that indeed no surface exists saturating (1) and embedded
in an axisymmetric and asymptotically flat, maximal vacuum data set.

Theorem 1. Let ($; g, K) be a smooth vacuum axisymmetric maximal data set with finitely
many asymptotically flat ends E1, . . . , En. Let S be any orientable compact and boundary-less
embedded surface. Then

A(S) > 8π |J(S)|, (8)

where A(S) is the area of S and J(S) is its angular momentum.

An immediate corollary is

Corollary 1. There are no black hole apparent horizons of zero temperature in smooth,
maximal, axisymmetric and asymptotically flat vacuum data sets.

Of course the extreme Kerr-throats are instances of maximal axisymmetric data sets
possessing extreme Kerr-throat spheres but they are not asymptotically flat. The following
theorem partially explains the special role that the extreme Kerr-throats play among the data
sets containing an extreme Kerr-throat sphere.

2 More explicitly, for any smooth F : [−ε, ε]×S → $ with F(0, −) = Id(−) and ε small to have F(x, −) : S2 → $
a smooth embedding, the real function λ → A(F(λ, S)) must have an absolute minimum at λ = 0 because of (1). It
follows that the first λ-derivative is zero and the second is non-negative. As this is valid for all F then the surface is
minimal and stable.
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Theorem 2 (Rigidity of extreme Kerr-throats). Let ($; g, K) be an homogeneously regular
smooth axisymmetric maximal vacuum data set where $ is diffeomorphic to S2 × R.
Suppose that for any sphere S isotopic to the factor S2 we have A(S) ! 8π |J| where
J = J(S) = J([S2]), and suppose that there is at least one sphere SH also isotopic to
the factor S2 with A(SH ) = 8π |J|. Then ($; g, K) is the extreme Kerr-throat data set (3)–(4)
of angular momentum |J| and SH is an extreme Kerr-throat sphere of area A(SH ) = 8π |J|.

Theorem 2 is a remarkable manifestation, like in the positive mass theorem, of the
nonlinearity of the constraint equations. The notion of homogeneously regular manifold
which is explained in section 2.5 essentially says that the metric is controlled in C2 (on
certain coordinates) on every metric ball of a uniform radius. We do not know at the moment
if this condition can be removed and if only completeness of the data set is enough (it would
be nice to answer this question). It seems however feasible to prove an optimal version of
theorem 2 prescinding of the topological condition $ ≈ S2 × R.

A consequence of theorem 2 is the following important corollary on the formation of
Kerr-throats.

Corollary 2 (Formation of extreme Kerr-throats). Let ($]; gi, Ki) be a sequence of smooth
maximal vacuum axisymmetric and asymptotically flat initial data sets and let Si be a sequence
of spheres embedded in $i. Suppose that the sequence of data sets converges smoothly into
a homogeneously regular maximal data set ($∞; g∞, K∞) and that the sequence of spheres
converges to a sphere S∞. If $∞ is diffeomorphic to S2 × R and A(S∞) = 8π |J(S∞)|, then
the limit data ($∞; g∞, K∞) is the extreme Kerr-throat of angular momentum |J(S∞)| and
S∞ is an extreme Kerr-throat sphere of area A(S∞).

The precise notions of convergence involved in this statement are the following. The
sequence ($; gi, Ki) converges smoothly to ($∞; g∞, K∞) iff there is a sequence of
diffeomorphisms ϕi : $∞ → $i such that ϕ∗

i gi and ϕ∗
i Ki converge in C∞ and over any

open set of compact closure to g∞ and K∞ respectively. The spheres Si converge smoothly to
S∞ iff there are diffeomorphisms φi : S2 → Si such that ϕ−1

i ◦ φi : S2 → $∞ converges in
C∞ to a smooth embedding S2 → S∞ ⊂ $∞.

Roughly speaking what the corollary says is that under basic assumptions a sequence
of asymptotically flat, maximal axisymmetric data ($i; gi, Ki) and sequence of embedded
spheres Si can asymptotically saturate the universal inequality (1) only at the expense of the
formation of an extreme Kerr-throat. More heuristically: extreme Kerr-throats form as the
‘temperature decreases to zero’. This phenomenon is depicted in figure 3.

It is interesting to see theorem 1 and corollary 2 at work in the Kerr family of black holes.
For the discussion that follows it is worth keeping in mind the Penrose diagram in figure 2
of the Kerr black holes for 0 < J2 < m4. To facilitate the discussion we will assume m = 1
and therefore 0 < a = J2 < 1. The space-time is represented in the Penrose diagram in four
sectors. The quadrant on the right corresponds to the metric (2) for the range of coordinates

{
− ∞ < t < ∞, 1 + (1 − a2)

1
2 < r < ∞, 0 " θ " π , 0 " ϕ < 2π

}
,

and the upper quadrant corresponds to the range of coordinates
{

− ∞ < t < ∞, 1 − (1 − a2)
1
2 < r < 1 + (1 − a2)

1
2 , 0 " θ " π , 0 " ϕ < 2π

}
.

Note that in this case ∂t is space-like while ∂r is time-like. One can check directly theorem 1
for the {t = 0} maximal slice which has the black hole horizon located at {r = 1 + (1 − a2)

1
2 }.

The area is

A =
(
1 + (1 − a2)

1
2
)
8π ,
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Figure 3. The phenomenon of the formation of extreme Kerr-throats along sequence of
data sets. The inequality (1) is saturated asymptotically along the spheres {Si}.

which is always greater than 8π and converges to 8π as a ↑ 1. A more interesting phenomenon
occurs when we see corollary 2 in the light of the maximal slices given by the evolution in
the maximal gauge of the initial slice. The maximal foliation penetrates inside the black hole
region (the upper quadrant) and approaches in the long-time limit to a maximal slice, ‘the last
slice’, lying entirely inside the black hole region3 (see figure 2). One observes now that the
area of the spheres of constant r along the hyper-surface {t = 1 + (1 − a2)

1
2 } in the upper

quadrant, evolve from (1+ (1−a2)
1
2 )8π monotonically to (1− (1−a2)

1
2 )8π . The area of the

sphere formed by the intersection of the ‘last slice’ and {t = 1 + (1 − a2)
1
2 } thus approaches

to 8π as a ↑ 1. According to corollary 2 the ‘last slice’ must approach the Kerr-throat as
a ↑ 1. This can be seen explicitly by studying carefully the metric (2) as a ↑ 1. What occurs
is a remarkable phenomenon. As a ↑ 1 the metric (2) in the upper quadrant of the Penrose
diagram converges into the following metric

g = −(1 + cos2 θ̄ ) dt̄2 + (1 + cos2 θ̄ )((tan t̄)r̄ dt̄ + dr̄)2

+
[

4 sin2 θ̄

(1 + cos2 θ̄ )

]

(r̄ dt̄ − dϕ̄)2 + (1 + cos2 θ̄ )2 dθ̄2, (9)

where we have barred the space-time coordinates to emphasize that they are not the same as the
coordinates (t, r, θ ,ϕ) which indeed degenerate as a ↑ 1. This metric we call a metric soliton
in the sense that, as seen as a flow (g, K; N, X )(t̄) over S2 × R with coordinates (r̄, θ̄ , ϕ̄), we
have

g(t̄) = gT ,

K(t̄) = KT + (1 + cos2 θ̄ )
1
2 (tan t̄) dr̄2,

N(t̄) = (1 + cos2 θ̄ )
1
2 ,

X (t̄) = r̄(tan t̄)∂r̄ − r̄∂ϕ̄,

where, as it is apparent, the metric g does not evolve and remains equal to the three-metric
gT of the Kerr-throat given by (3). The only slice {t̄ = const.} with zero mean curvature is

3 We do not know an explicit expression for the last slice.
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{t̄ = 0} and is the limit of the ‘last slices’ as a ↑ 1. As tan(t̄ = 0) = 0 we conclude from
the expression above that the data (g, K) over the slice {t̄ = 0} is exactly the Kerr-throat.
Note that t ∈ (−π/2,π/2). The metric (9) is globally hyperbolic and partly coincides with
the so-called near horizon geometry (see [2], equation (2.5)) that has been extensively studied
in the literature and is not globally hyperbolic. The space-time described by the metric (9)
has the remarkable property that is foliated by marginally trapped spheres saturating (1). In a
certain sense the whole solution is a horizon. To obtain the expression (9) make the change of
variables (t, r, θ ,ϕ) → (t̄, r̄, θ̄ , ϕ̄)

t̄ = a(−")
1
2

r2 + a2
t, r̄ = arcsin

1 − r

(1 − a2)
1
2

θ̄ = θ , and ϕ̄ = ϕ − a
r2 + a2

t,

in the expression (2) and take the limit as a ↑ 1.
We glimpse now on the basic idea behind the proof of theorem 1. We suppose by

contradiction that there is a data set ($; g0, K0) as in the hypothesis of theorem 1 but possessing
an embedded (orientable, compact and boundary-less) surface S = SH saturating (1). Then,
as discussed before, the surface SH must be an extreme Kerr-throat sphere. Let (g(t), K(t))
be the evolution of the initial data (g0, K0) = (g(0), K(0)) in the maximal gauge and with
zero shift (see section 2.1). In particular every ($; g(t), K(t)) is a maximal axisymmetric and
asymptotically flat vacuum data set. Then, as proved by a simple calculation in proposition 3,
unless the lapse function N(0) at the time zero is proportional to αT over SH then the g(t)-area
of the surface SH strictly decreases in short times. But as J(SH ) is preserved then the universal
inequality (1) would be violated in short times. Unfortunately this simple argument works
as long as N(0) is not proportional to αT over SH . It takes some technical work and a large
part of this paper to provide a proof of the theorem 1 in the spirit described but which also
contemplates this possibility. The proof of theorem 2 is based in the same principle. We will
be explaining more along the paper.

The paper is organized as follows. In section 2 we recall the very basic notions and
definitions required to read the paper. Section 3 contains the proof of theorems 1 and 2. In the
appendix we prove some propositions used in the proofs of the main results whose contents
are a bit apart from the mainstream of the paper.

2. Basic notions

In this section we introduce the basic notions that we will use during the paper. First we recall
the Einstein vacuum equations from the dynamical point of view. This point of view is the one
appropriate to analyze initial data as we will do in theorems 1 and 2. Then we recall the second
variation formula for minimal surfaces on three manifolds and the form that they acquire
when the metric is the metric of an initial data for vacuum solutions. After that we introduce
areal-coordinates on axisymmetric spheres and other coordinates which play a crucial role
in certain formulae. Finally we discuss basic but important properties of stable surfaces in
axisymmetric three manifolds whose proofs are given in the appendix. The presentation is
somehow general and could be of use in further research.

2.1. The vacuum Einstein equations

Let $ be a fixed smooth manifold (say covered by a set of fixed charts (x1, x2, x3)). Given
a Riemannian metric g we will denote by Ric and R the Ricci and the scalar curvatures of
g respectively. Given a symmetric two tensor K, we will use the notation |K|2 = Ki jKi j

and k = trgK = Ki jgi j. Finally given a vector field X = Xi, LX will denote the Lie derivative

7
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along X . Let (g, K; N, X )(t) be a smooth flow over $ of:

Riemannian metrics g(t) = gi j(t) and symmetric two − tensorsK(t) = Ki j(t),

Lapse functions N(t) > 0 and Shift vector fields X (t) = Xi(t).

If for all t (in its range I) we have

ġi j = −2NKi j + (LX g)i j, (10)

K̇i j = −∇i∇ jN + N
(
Rici j + kKi j − 2K k

i Kk j
)
+ (LX K)i j, (11)

R = |K|2 − k2, (12)

∇ iKi j = ∇ jk, (13)

then the 3 + 1 metric

g = −
(
N2 − XiXi) dt2 + Xi(dt ⊗ dxi + dxi ⊗ dt) + gi j dxi dx j,

is a solution of the Einstein vacuum equations (Ric = 0) on I × $ where I is the interval on
which t varies [6]. If we let n be a unit-normal to the level sets of the time coordinate (which are
space-like hyper-surfaces) we have ∂t = Nn+Xi∂i. Moreover K(t) are the second fundamental
forms of the level sets of the time coordinate, namely of {t} × $. Equations (10) and (11) are
the dynamical equations and (12) and (13) are the energy and momentum constraints equations
respectively. The evolution is said to be maximal if k(t) = 0 for all t. In such case the Lapse
satisfies, at any time, the Lapse equation

"N = |K|2N. (14)

Conversely if $ is a space-like hyper-surface (possibly with boundary) on a vacuum space-
time and V is a non-zero time-like vector field defined on an open space-time neighborhood of
$ then one can obtain a flow $(t), at least for a short time, by moving $ along V . Coordinates
charts (x1, x2, x3) are propagated by V to every $(t) and any two $(t) and $(t ′) are naturally
diffeomorphic. In this way one obtains a flow (gi j(t), Ki j(t)) for the induced three-metrics and
second fundamental forms on the fixed manifold $. Writing V |$(t) = N(t)n + Xi(t)∂i, where
n is a space-time unit-normal to $(t), then one obtains a flow of Lapse functions N(t) and
Shift vectors X (t) = Xi∂i. The flow (g(t), K(t); N(t), X (t)) satisfies (10)–(13). It is important
to stress that the flow is on a fixed manifold $.

2.2. Angular momentum

Let S be an orientable compact and boundary-less surface embedded in an axisymmetric data
set ($; g, K). Let ς be one of the two unit-normal fields to S in $. Then the Komar angular
momentum J(S) (in the direction of ς ) is

J(S) := 1
8π

∫

S
K(ξ , ς ) dA. (15)

In this expression ξ is the rotational Killing field, K is the second fundamental form of the data
set and ς is a unit-normal to S. Of course with the other choice of the normal ς the angular
momentum just changes sign. Note that by the axisymmetry and (13) we have ∇ i(Ki jξ

j) = 0.
This shows that J(S) depends only on the homology class of S.

8
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2.3. Minimal surfaces and the second variation of area

Let ($; g, K) be a data set. An embedded surface S is minimal if its mean curvature is identically
zero. Suppose that S is a compact orientable minimal surface possibly with boundary. Let ς

be a unit-normal vector field to S and let α : S → R be a smooth function that is zero on ∂S
when ∂S 0= ∅. Then, the second variation of the area, A′′

α(S), for the deformation of S along
ας is the well known [8]

A′′
α(S) =

∫

S
[|dα|2 − (|-|2 + Ric(ς , ς ))α2] dA, (16)

where here - is the second fundamental form of S. The mean curvature will be denoted by
trh-. The minimal surface S is said to be stable if A′′

α(S) ! 0 for all α. In dimension 3 we
have the general identity 2K = (trh-)2 − |-|2 + R − 2Ric(ς , ς ), where K is the Gaussian
curvature of S and of course trh- = 0 when S minimal. From this and the energy constraint
we deduce that if S is stable then for any α as described before we have

∫

S
(|dα|2 + Kα2) dA ! 1

2

∫

S
(|-|2 + |K|2 − k2)α2 dA. (17)

2.4. Areal and polar coordinates for axisymmetric spheres and further coordinates

Let ($, g) be an a axisymmetric manifold. Then the group U (1) acts on ($, g) and the orbits
are either circles or fixed points. The set of fixed points are a set of complete one-dimensional
manifolds (i.e. diffeomorphic to lines or circles) which we call the axes and denote by P .

(1) Areal coordinates on spheres. Let S ⊂ $ be an axisymmetric sphere. Then S is foliated
by U (1)-orbits {C}. Two of these orbits, that we call the poles, are just points and are
denoted by N (from ‘North’) and S (from ‘South’). Every orbit which is not a pole divides
S into two discs that we denote by DN(C) and DS(C) (the first contains N and the second
S). Their areas are denoted by AN(C) = area(DN(C)) and AS(C) = area(DS(C)). Define
the polar coordinate θ (C) at C by

AN(C) = A(S)

2
(1 − cos θ (C)).

To define an azimuthal coordinate ϕ proceed as follows. The gradient of θ (inside S)
defines a vector field perpendicular to the orbits and invariant under the U (1)-action. The
integral curves foliate smoothly S \ {N, S}. Denote the foliation by {C′}. Pick any integral
curve to define {ϕ = 0}. Then ϕ(C′) is the angle necessary to rotate {ϕ = 0} to get C′. In
these coordinates the induced metric h (from g) on S looks like

h =
[

A(S)

4π

]2

e−σ dθ2 + eσ sin2 θ dϕ2, (18)

where σ = σ (θ ). Note that dA = (A(S)/4π ) sin θ dθ dϕ.
(2) Polar coordinates on discs. In addition to areal-coordinates we will use polar coordinates

for discs DN or DS. Around the respective pole the induced metric h in polar coordinates
is

h = ds2 +
[
/(s)
2π

]2

dϕ2. (19)

Of course {s = 0} is the pole and /(s) is the length of the orbit C(s) at a h-distance s
from the pole. Say {s = 0} is the north pole. Then we will denote A(s) := AN(C(s)). This
notation will be used later (see the proof of proposition 5). In particular A(s) =

∫ s
0 /(s̄) ds̄.

9
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(3) Gaussian-coordinates around surfaces. Let S be an axisymmetric sphere embedded in $

and provided with areal-coordinates (θ ,ϕ). For r̄ > 0 small enough let

Tg(S, r̄) := {p ∈ $, distg(p, S) " r̄},
be the tubular (closed) neighborhood of S of radius r̄. For every q ∈ S let γq(r) be the
g-geodesic emanating from q, perpendicular to S and parametrized with (signed) arc-
length r ∈ [−r̄, r̄]. For every p ∈ Tg(S, r̄) let q(p) be the initial point in S such that
γq(p)(r(p)) = p (|r(p)| = distg(p, S)). The g-Gaussian coordinates (r, θ ,ϕ) on Tg(S, r̄)
are defined through

(r, θ ,ϕ)(p) = (r(p), θ (q(p)),ϕ(q(p))).

We will use Gaussian coordinates often in this paper. Observe that ∂ϕ is the rotational
Killing field. In Gaussian coordinates the metric g is written as g = dr2 + h where
h(∂r,−) = h(−, ∂r) = 0 at any point.

(4) Space-time coordinates. The Gaussian coordinates are propagated along the evolution
(using (N, X )) in such a way that (r, θ ,ϕ, t) (t small) is a space-time coordinate system
around S. We will use the index A, B, . . . when we use only the two coordinates (θ ,ϕ)

while we will use the index i, j, . . . when use the three coordinates (r, θ ,ϕ). In this sense
the components of h are hAB while those of g are gi j.

Above we introduced Tg(S, r̄). More in general, we will use

Tg(1, r̄) = {p ∈ $/distg(p,1) " r̄},
to denote the (closed) tubular neighborhood of a set 1 ⊂ $ and radius r̄.

2.5. Homogeneously regular manifolds

A complete manifold is homogeneously regular if the injectivity radius is uniformly bounded
from below (away from zero) and the curvature is uniformly bounded from above. A more
quantitative but equivalent definition is the following [11]. A complete manifold $ is ρ0-
homogeneously regular if there is 0 < ν < 1/2 such that at any point p ∈ $ we have

(1) The exponential map Exp, from BTp$(0, ρ0) into B(p, ρ0) is a diffeomorphism (where
BTp$(0, ρ0) is the ball in the tangent space Tp$ of center p and radius ρ0 > 0 and B(p, ρ0)

is the geodesic ball in $ of center p and radius ρ0).
(2) Let {(x̄1, x̄2, x̄3)} be Cartesian coordinates in Tp$. Define as usual coordinates on B(p, ρ0)

by (x1, x2, x3) = (x̄1, x̄2, x̄3) ◦ Exp−1. Then,

sup
B(p,ρ0 )

|gi j − δi j| " ν, sup
B(p,ρ0 )

∣∣∣∣
∂gi j

∂xk

∣∣∣∣ " ν

ρ0
, sup

B(p,ρ0 )

∣∣∣∣
∂gi j

∂xkxl

∣∣∣∣ " ν

ρ2
0

,

for all i, j, k, l in {1, 2, 3}.
Essentially, a homogeneously regular manifold is one for which the metric is controlled

in C2 (on certain coordinates) on every metric ball of a uniform radius. It is easy to see from
the definition that if ($, g) is ρ0-homogeneously regular then ($, λ2

0g), λ0 > 0, is λ0ρ0-
homogeneously regular. In particular, for any ε > 0 there is λ0(ε, ρ0) such that for any point
p, the scaled metric λ2

0g on Bλ2
0g(p, 1) is ε-close in C2 (in the coordinates described above) to

the flat metric on the unit ball of R3. Before Bλ2
0g(p, 1) is the ball of center p and radius one

with respect to λ2
0g.

For a manifold with boundary the definition is similar, but we require that there is an
extension ($̄, ḡ) of ($, g) such that the boundary of $̄ lies at a ḡ-distance greater than ρ0

from ∂$ and at every point p of $ the points 1 and 2 hold. Of course every compact manifold,
with boundary or not, is ρ0-homogeneously regular for some ρ0.
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2.6. Minimal surfaces in axisymmetric spaces

Let BR3 (o, r) be the ball in R3 of radius r and centered at the origin o = (0, 0, 0). We will think
R3 as an axisymmetric space-time where the U (1)-action is by rotations around the z-axis.
Every compact, connected and possibly with boundary axisymmetric surface S embedded
inside BR3 (o, 1) (but with its boundary not necessarily in ∂BR3 (o, 1)) is either

I0. An axisymmetric sphere or an axisymmetric torus (zero boundary component).
I1. An axisymmetric disc (one boundary component).
I2. An axisymmetric cylinder, namely diffeomorphic to S1 × [0, 1] (two boundary
components).

Let Si, i = 0, 1, 2, be the set of connected axisymmetric surfaces embedded in BR3 (o, 1)

of type Ii, i = 0, 1, 2 respectively and with boundary, if any, lying in ∂BR3 (o, 1). Let C be an
orbit in BR3 (o, 1) which is not a point in the axis. Let I C

1 be the set of axisymmetric discs in
I1 with boundary C.

The following proposition is straightforward (indeed the first item is trivial) from standard
properties of minimal surfaces. As it is standard and the proof has few to do with the content
of the paper we divert the proof until the appendix.

Proposition 1. There is 0 < L < 1 such that.

(1) For every orbit C ⊂ BR3 (o, L), which is not a point in the axis, there is a unique disc D
in S C

1 which is minimal. Such unique disc minimizes area among all the surfaces in the
family of surfaces S C

1 and therefore is stable.
(2) There are no stable axisymmetric minimal surfaces in the family of surfaces S0 ∪S2 and

intersecting BR3 (o, L).

Of course one can scale down the catenoid and then restrict it to BR3 (o, 1) to show that
there are minimal surfaces in the family S2 reaching as close to the origin o as wished.
However such surfaces are not going to be stable when they close enough to the axis.

It will be necessary to dispose of a version of proposition 1 but for C2-perturbed
axisymmetric metrics. More precisely.

Proposition 2. Let g be a smooth axisymmetric metric on the Euclidean ball BR3 (o, 2) ⊂ R3.
Assume that the polar coordinate system (z, ρ,ϕ) of R3 is adapted to g in the sense that, in
these coordinates gi j is independent on ϕ. Then there is ε0 > 0 and 0 < L < 1 such that if g
is ε0-close in C2 to the flat metric in R3 the following is true.

(i) For every orbit C ⊂ Bg(o, L), which is not a point in the axis, there is a unique disc D
in S C

1 which is minimal. Such unique disc minimizes area among all the surfaces in the
family S C

1 .
(ii) There are no stable axisymmetric minimal surfaces in the family S0 ∪S2 and intersecting

Bg(o, L).

A corollary which we also prove in the appendix is the following.

Corollary 3. Let ($, g) be a ρ0-homogeneously regular, non-necessarily compact
axisymmetric three-manifold with smooth, compact and axisymmetric boundary. Assume that
the (outward) mean curvature of the boundary is bounded below by µ0 > 0 and that the norm
of the second fundamental form is bounded above by µ1. Let S be an orientable, compact and
boundary-less, axisymmetric and stable minimal surface embedded in $. Then, the following
four statements hold.

11
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(i) S ⊂ ($ \ Tg(∂$, ε1)) where ε1 = ε1(ρ0, µ0, µ1). In other words, S lies at a distance
greater than ε1 from ∂$.

(ii) A(S) ! A0(ρ0, µ0, µ1) > 0. That is, there is a uniform lower bound for the area of S.
(iii) There is ε2(ρ0, µ0, µ1) < ε1/2 such that ∂

(
Tg(P, ε2)

)
\Tg(∂$, ε1) is smooth and foliated

by orbits and for any one of such orbits there is a unique area minimizing disc D with
boundary the orbit. Moreover, if S intersects Tg(P, ε2) then it does at two of such discs.
Thus, either S intersects the axes P , in which case it does twice and the surface is a
sphere, or it lies at a distance from P greater than ε2.

(iv) Let D be any disc as in item 3 and and let h = ds2 + (//2π )2(s) dϕ2 be its two-metric in
polar coordinates. Then s ranges in an interval (0, sD] where 0 < s0(ρ0, µ0, µ1) < sD <

s1(ρ0, µ0, µ1). Moreover we have |/(s) − 2πs| " c0(ρ0)s2.

When $ is ρ0-homogeneously regular but boundary-less then the estimates in the items
2,3 and 4 depend only on ρ0.

To finish this section let us mention that orientable, compact and boundary-less
stable minimal surfaces in either asymptotically flat axisymmetric manifolds or in
compact axisymmetric manifolds with non-empty axisymmetric boundary are necessarily
axisymmetric4. In particular one can replace the hypothesis ‘orientable, compact and boundary-
less stable axisymmetric minimal surface’ in corollary 3 by ‘orientable, compact and boundary-
less stable minimal surface’. We explain this important fact in what follows. Let $ be a
three-manifold of one of the two mentioned types and let S be an orientable, compact and
boundary-less stable minimal surface embedded in $. Let again ξ denote the axial Killing
field and ς a unit-normal to S. Let ψ =< ξ , ς > be the normal component of ξ on S. The
surface S will be axisymmetric if we can prove that ψ is zero. Let us show this. If ψ is
nowhere zero then the U (1)-orbits are transversal to S at any of its points which implies that
$ must be diffeomorphic to S × S1. This is impossible because $ is either non-compact or
with non-empty boundary. It follows that ψ must be somewhere zero. Suppose that ψ is not
identically zero in S. As ξ is Killing we deduce that the second variation of the area along ψς

is zero. From this and because S is stable we deduce that the first eigenvalue of the second
variation operator5 is zero and that ψ is its eigenfunction. But the eigenfunction of the first
eigenvalue is always nowhere zero and we reach a contradiction.

3. Proof of the main results

3.1. The second variation of area in time for extreme Kerr-throat spheres

The following is a main technical tool that we will use in the proofs of the main results.

Proposition 3. Let ($; g, K) be a vacuum, axisymmetric and maximal initial data set and let
SH be a stable extreme Kerr-throat sphere embedded in $. Let the initial data (g, K) evolve
following the vacuum Einstein equations with smooth lapse N(t) and shift X (t) about which
we know only that N(0) > 0 and that X (0) = 0. Then, at time t equal to zero we have

Ȧ(SH ) = 0,

and

Ä(SH ) = −A′′
N (SH ) " 0,

4 We would like to thank the referee for pointing out that a similar argument appears in theorem 8.1 in [4].
5 The second variation operator is here that obtained from varying (16) that is Lφ = −"φ − (|-|2 + Ric(ς , ς ))φ.
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where Ȧ(SH ) and Ä(SH ) are the first and second time derivatives of Ag(t)(SH ) respectively.
Moreover equality in the inequality in (3) holds iff in areal-coordinates we have N(0)

∣∣
SH

= cαT

for a certain constant c.

Note 1. In a vacuum axisymmetric maximal and asymptotically flat data set, every extreme
Kerr-throat sphere is necessarily stable. In proposition 3 there is no global assumption on the
initial data of any kind and the stability of SH has to be imposed a priori. Nevertheless, as can
be seen from the proof, even if SH is not stable we still have Ä(SH ) = −A′′(SH ).

Proof. In the following calculation one can use for instance the space-time coordinate system
introduced in section 2.4. At any time t (not only zero) we compute

Ȧ(SH ) = 1
2

∫

SH

ḣABhAB dA =
∫

SH

[
−NKABhAB + 1

2
(∇AXB + ∇BXA)hAB

]
dA, (20)

where to obtain the second inequality we used (10). Differentiate in time this expression once
more and use that KAB(0)hAB(0) = 0 (because SH is an extreme Kerr-throat sphere of the
initial data) and that X (0) = 0 to obtain at time t equal to zero the expression

Ä(SH ) =
∫

SH

[
−NK̇ABhAB + 1

2
(∇AẊB + ∇BẊA)hAB

]
dA. (21)

As SH is totally geodesic in ($, g(0)) then (also at time zero) we have
∫

SH

1
2
(∇AẊB + ∇BẊA)hAB dA =

∫

SH

[DivSH 7(Ẋ )] dA = 0,

where 7(Ẋ ) is the projection of Ẋ to the tangent space of SH , and DivSH 7(Ẋ ) is its divergence
as a vector field in (SH, h(0)). Hence the second term in the rhs of (21) is zero. Use now (11)
in (21) and recall that the initial data is maximal (i.e. k(0) = 0) to obtain (at time zero)

Ä(SH ) =
∫

SH

[
− N

(
− ∇A∇BN + N

(
RicAB − 2KAiKi

B

))
hAB]

dA. (22)

For the first term on the rhs of this expression we have
∫

SH

N(∇A∇BN)hAB dA = −
∫

SH

|dN|2 dA,

because SH is totally geodesic in ($, g(0)). Here dN is the differential of N in SH . On the
other hand we have RicABhAB = R − Ric(ς , ς ) where ς is a unit-normal to SH in $. Finally,
using the energy constraint and using that at time zero the only non-zero components of Ki j

are Kϕr (and Krϕ) then we have 2KAiKi
BhAB = |K|2 = R. Putting all together we obtain the

following expression for (22) at time zero

Ä(SH ) =
∫

SH

[−|dN|2 + Ric(ς , ς )N2] dA = −A′′
N (SH ),

where the second inequality is due to the fact the second fundamental form of SH as a surface
in ($, g(0)) is zero. This proves the equality in (3). The inequality instead follows from the
fact that because SH is a stable minimal surface in ($, g(0)) then for any α : SH → R we have

A′′
ας (SH ) ! 0. (23)

We prove now the last statement of the proposition. As shown in [9] in any extreme Kerr-throat
sphere we have A′′

αT ς (SH ) = 0. From this and (23) we deduce that the first eigenvalue of the
stability operator is zero and that αT is an eigenfunction. But because the eigenspace of the
first eigenvalue is one-dimensional we deduce that A′′

ας (SH ) = 0 iff α is proportional to αT .
Therefore A′′

N (SH ) = 0 iff N(0)|SH = αT as wished. #
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3.2. Proof of theorem 1

Let us recall the main argument behind the proof of theorem 1. Assume by contradiction
the existence of ($; g0, K0) containing an extreme Kerr-throat sphere SH and to fix ideas
suppose that SH is isotopic to a sphere at ‘infinity’ on one of the asymptotically flat ends.
Suppose that the maximal lapse Nm, namely the solution to (14) which is asymptotically one
at infinity on $, is not proportional to αT over SH . Then, evolving the initial data (g0, K0)

in the maximal gauge with zero shift and using proposition 3 and the conservation of angular
momentum one obtains, in short time, a sphere on an asymptotically flat, axisymmetric,
maximal data violating (1) which is impossible. Unfortunately it could be (a priori) that Nm

is proportional to αT over SH and therefore the argument, as such, is incomplete. However
one can technically modify it, still following the same ground idea, to make it work. The
modification consists in working on a large but compact region of the initial data enclosed
by large convex spheres, whereas we will see using proposition 4 it is always possible to
find a positive solution N0 of the Lapse equation not proportional to αT over SH . Then flow
the initial data over such compact region along certain (see later) axisymmetric Lapse and
Shift (N, X )(t) with N|t=0 = N0 and X |t=0 = 0. Unfortunately the flow will be known to
be maximal only at time zero and at later times maximality could fail. This is an important
drawback because although by proposition 3 we have, for t small,

A(SH ) " 8π |J(SH )| −
A′′

N0
(SH )

4
t2, A′′

N0
(SH ) > 0, (24)

(where here and below A(SH ) := Ag(t)(SH )), the inequality A(S) ! 8π |J(S)| is not known to
hold on non-maximal slices, and the original contradiction argument may be inapplicable. Here
is where we use that the initial slice is maximal and that, because N|t=0 = N0 satisfies the Lapse
equation and k̇|t=0 = −"N0+|K0|2N0 = 0, then the mean curvature k(t) at small times behaves
as k(t) ≈ O(t2). This order of failure of maximality allows us to prove in proposition 5, and for
small times, the lower estimate A(St ) ! 8π |J(St )| − 80t4 for the area of stable axisymmetric
minimal surfaces St . This is then used in the proof of theorem 1 to obtain the inequality

A(SH ) ! 8π |J(SH )| + O(t4), (25)

for small times. Inequalities (24) and (25) show a contradiction in the original spirit. We move
then to prove the preliminary propositions 4 and 5, the proof of theorem 1 is given afterward.

Proposition 4. Let (1; g, K) be a vacuum maximal data set where 1 is a compact manifold
with smooth boundary. Suppose that either

A1. There is an extreme Kerr-throat sphere SH dividing 1 into two connected components
11 and 12, or,
A2. There are extreme Kerr-throat spheres S1

H and S2
H, the union of which divides 1 into

two connected components 11 and 12.

Then there is an axisymmetric solution N of the Lapse equation which is positive on
1◦ = 1 \ ∂1 and

(1) is not proportional to α1
T over SH in case A1, or,

(2) is not proportional to α1
T over at least one of the surfaces S1

H or S2
H in case A2.

where α1
T :=

√
1 + cos2 θ in the areal-coordinates of the respective sphere.

Note 2. If SH is an extreme Kerr-throat sphere of area AH then the function αT , as defined in
the introduction is, αT =

√
AH/8π

√
1 + cos2 θ . Therefore if N is not proportional to α1

T over
SH then it not proportional either to αT .

14
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Proof. Denote by W1 and W2 the set of connected components of ∂1 belonging to 11 and 12

respectively. As 1 has non-empty boundary by assumption then W1 and W2 cannot be empty
at the same time. We will assume that W2 0= ∅. We discuss cases A1 and A2 separately.

Case A1. Let N̄a and N̄b be two positive and linearly independent axisymmetric functions
over W2 and let Na and Nb be, respectively, the solutions of the Lapse equation with boundary
data

"N = RN,

N
∣∣
W2

= N̄a or N̄b,

N
∣∣
W1

= 0, if W1 0= ∅.

The uniqueness of the solutions Na, Nb and the axisymmetry of the boundary data imply
that Na and Nb must coincide with their rotational averages and therefore must be rotational
symmetric. If either Na or Nb are not proportional to α1

T over S we are done. On the other
hand, if both Na and Nb are proportional to α1

T over SH , we can consider a non-zero linear
combination caNa +cbNb which is equal to zero over SH . The combination is also zero over W1

if W1 0= ∅ and as ∂11 = W1 ∪ SH uniqueness implies that the combination is zero all over 11.
But because N̄a and N̄b are linearly independent then caNa + cbNb is not identically zero over
12. This contradicts the unique continuation principle for elliptic equations [5]. Thus either
Na and Nb are not proportional to α1

T over SH .
Case A2. Let N̄a, N̄b and N̄c be three positive and linearly independent axisymmetric

functions over W2. Let Na, Nb and Nc be the axisymmetric solutions to the Lapse equation
with boundary data zero over W1 if non-empty and boundary data N̄a, N̄b or N̄c over W2,
respectively. If all of Na, Nb and Nc are proportional to α1

T over both S1
H and S2

H then, again,
one can easily find a linear combination of the three that is zero over both S1

H and S2
H . A

contradiction is then found as in case A1. #
Let ($; g, k) be, as in theorem 1, a maximal (vacuum and axisymmetric) data set with

possibly finitely many asymptotically flat ends E1, . . . , En, n ! 1. Let S1, . . . ,Sn be large
axisymmetric and strictly convex spheres on each of the ends E1, . . . , En respectively. Suppose
there is an extreme Kerr-throat sphere SH . If SH does not divide $ into two connected
components then one can cut $ along SH to get a manifold with two boundary components
(say S1

H and S2
H) and glue back smoothly a copy of it (crossing the boundaries). The result

is a smooth manifold with 2n asymptotically flat ends and having two embedded extreme
Kerr-throat spheres S1

H and S2
H the union of which divides the manifold into two connected

components. The conclusion is that if there is an extreme Kerr-throat sphere then either we are
in the hypothesis A1 of proposition 4 or that we can construct a data set in the hypothesis A2.
We will continue as if we were either in the hypothesis A1 or A2 therefore. In either case we
are denoting by 1 to the regions enclosed by the large spheres (including the large spheres).

We note now that there is always a positive solution N0 to the Lapse equation on 1

(including ∂1) which is not proportional to αT over SH (in case A1) or is not proportional
to αT over one of the spheres S1

H or S2
H (in case A2). Indeed let Nm be the (positive) solution

to the Lapse equation that is asymptotically one over any asymptotically flat end. If Nm is
proportional to αT over SH (in case A1) or is proportional to αT over both, S1

H and S2
H (in case

A2) then we can add to it a solution to the Lapse equation as in proposition 4 to obtain a positive
solution on 1 with the desired property. From now on let N0 be the positive axisymmetric
solution of (14) in 1, that is not proportional to αT over SH (in case A1) or is not proportional
to αT over either S1

H or S2
H (in case A2).

Let n be a (one of the two possible) unit-normal fields to 1 inside the space-time. For any
p ∈ 1 let γp(τ ) be the (space-time) geodesic emanating from p, in the direction of n(p), and
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parametrized with arc-length τ . In the domain {o/o = γp(τ ), p ∈ 1, 0 " τ " τ0}, τ0 a small
constant, we consider a vector field V by

V (o) := N0(p)γ ′
p(τ ), if γp(τ ) = o. (26)

Flowing the domain 1 inside the space-time (generated by the data) by the vector field V , we
obtain an evolution flow (g, K; N, X )(t) over the fixed 1 where t is the parameter associated
to the flow by V (see section 2.1). Moreover we have Xt=0 = 0 and Nt=0 = N0. Note that the
evolution induced by V is axisymmetric, namely (g, K; N, X ) are axisymmetric. However the
evolution does not have to be maximal, that is, we do not necessarily have k(t) = 0 for all t.
Despite of this we have

k
∣∣
t=0 = 0, k̇

∣∣
t=0 = −"N0 + RN0 = 0.

Thus there is k0 > 0 such that |k(t)| " k0t2. Therefore the energy constraint implies (at time t)
R = |K|2 +O(t4). The following auxiliary proposition gives a crucial lower bound on the area
A(St ) of stable minimal surfaces St in (1; g(t), K(t)) (with an upper bound on their areas).

Proposition 5. For any A1 > 0 there are t0 > 0 and 80 > 0 such for any 0 < t < t0
and (orientable, compact and boundary-less) stable axisymmetric minimal surface St on
(1; g(t), K(t)) with A(St ) " A1 we have

A(St ) ! 8π |J(St )| − 80t4.

Proof. Let t̄0, ρ0, µ0 and µ1 be such that for any t in [0, t̄0] the manifold (1, g(t)) is
ρ0-homogeneously regular and with strictly convex boundary of (outward) mean curvature
greater or equal than µ0 and norm of the second fundamental form bounded by µ1. Below
we are going to use the following constants. Let ε2 and A0 be as in corollary 3. Let
k0 > 0 be (as before) such that for all t ∈ [0, t̄0], we have |k(t)| " k0t2. Finally let
/0 = sup{2π |ξ (p)|g(t), p ∈ 1, t ∈ [0, t̄0]}.

For the proof we distinguish two cases, (1) when St is an axisymmetric torus, and, (2)
when St is an axisymmetric sphere (there are no other possibilities). Take into account that
all the calculations below are made on (1; g(t), K(t)) in particular that A(St ) denotes the
g(t)-area of St , i.e. A(St ) = Ag(t)(St ).

(1) St is an axisymmetric torus. Choosing α = 1 in the stability inequality (17) we obtain
∫

St

|K|2 dA "
∫

St

k2 dA,

and from (15) we get

(8π )2|J(St )|2 = |
∫

St

K(ξ , ς ) dA|2 " /2
0A1

(2π )2

∫

St

|K|2 dA.

From these two inequalities and the bounds mentioned above we obtain

(8π )2|J(St )|2 " A2
1/

2
0k2

0

(2π )2
t4.

Now, if t0, (t0 < t̄0) is small enough we obviously have

A0 ! A1/0k0 t2
0

2π
.

Putting all the inequalities together we obtain for any t " t0 and 80 > 0

A(St ) ! A0 ! A1/0k0 t2
0

2π
! 8π |J(St )| ! 8π |J(St )| − 80t4.
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(2) St is an axisymmetric sphere. Again, take into account that all the calculations below
are made on (1; g(t), K(t)). Let (θ ,ϕ) be the areal-coordinates of the sphere St and let σ

be as in (18). We would like to obtain first uniform upper and lower bounds for the function
σ (θ ) (θ ∈ [0, 2π ]) where by uniform we mean independently of θ and independent also of
the stable surface St (t0 " t̄0, t̄0 as before), although dependent on ρ0, µ0 and µ1. Observe
that because any axisymmetric sphere has two poles then St intersects P at two points. By
corollary 3 if St intersects Tg(t)(P, ε2) it does so in discs D on which, in polar coordinates, we
have the bounds

|/(s) − 2πs| " c0s2, (27)

|A(s) − πs2| " c1s3, (28)

where we are using the notation for /(s), A(s) as explained in section 2.4. The equations are
valid on 0 < s < sD with sD ∈ [s0, s1] and the constants s0, s1, c0, c1 depend only on ρ0, µ0

and µ1. Moreover we have (suppose without loss of generality that θ = 0 is the pole of the
disc),

/(s(θ )) = 2πeσ (θ )/2 sin θ , (29)

A(s(θ )) = A(St )

2
(1 − cos θ ). (30)

Combining (29) and (30) we get

eσ (θ (s)) = 1
16π2

[
A(St )

2

A(St ) − A(s)

] [
/2(s)
A(s)

]
.

To estimate the right-hand side of this expression we will use

4π
(1 − c0s/2π )2

(1 + c1s/π )
" /2(s)

A(s)
" 4π

(1 + c0s/2π )2

(1 − c1s/π )
,

obtained from the inequalities (27) and (28) and A0 " A(St ) " A1. From them one easily
shows that there is s2(ρ0, µ0, µ1), with s2 " s0, such that for any s ∈ (0, s2] we have (the
coarse) bounds

A0

8π
" eσ " A1

π
. (31)

It follows that there is some uniform ε3(ρ0, µ0, µ2) with ε3 " ε2 such that for any St , |σ | is
uniformly bounded on St ∩ Tg(t)(P, ε3).

Moreover, combining (27)–(30) we obtain that there is θ0(ρ0, µ0, µ2) such that for any
point q ∈ St outside Tg(t)(P, ε3) we have either |θ (q)| ! θ0 or |π − θ (q)| ! θ0. On the other
hand there are uniform upper and lower bounds for the length /(q) of the axisymmetric circles
(orbits) passing through any point q ∈ St outside Tg(t)(P, ε3). Because of these two facts and
the expression eσ (θ (q))/2 = /(q)

2π sin θ (q)
we deduce that there is a uniform bound for |σ (θ (q))|

at any point q ∈ St outside the tubular neighborhood Tg(t)(P, ε3). We thus obtain a uniform
bound for |σ | on any axisymmetric stable minimal sphere St with A(St ) " A1 as desired.

Now, following [9] (see also [10]) one can use the stability inequality to deduce6 for
axisymmetric spheres St the following crucial inequality

A(S) ! 4πe
M−8

8 , (32)

6 Use (15)–(29)–(31)–(32) in [9] and instead of (30) in [9] use the constraint equation R = |K| − k2. Finally note
that the equation (15) for the angular momentum is still valid even if the data set is not maximal. Indeed the Komar
angular momentum can be intrinsically defined as (5) in [10] which coincides with (15).
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where M is defined by

M = 1
2π

∫

S

(
σ ′2 + 4σ + ω′2

η2

)
sin θ dθ dφ − 1

2
e2c

∫

S
k2e−σ sin θ dθ dφ.

In this expression ec = A(S)/4π , η = eσ sin2 θ , the prime in σ ′ and ω′ are their θ -derivative
and ω = ω(θ ) is a smooth function defined through

dω

dθ
= A(S)

2π
K(ξ , ς ) sin θ .

A direct computation shows J(S) = (ω(π )−ω(0))/8. On the other hand it is proved in [1, 9]
that, if we let

M = 1
2π

∫

S

(
σ ′2 + 4σ + ω′2

η2

)
sin θ dθ dφ,

then

4πe
M−8

8 ! 8π |J(S)|. (33)

Using this in (32) we obtain

e
[

e2c
16

∫
S k2e−σ sin θdθ dφ

]

A(S) ! 8π |J(S)|. (34)

We will use this now for S = St on (1; g(t), K(t)). Using the bounds A(St ) " A1,
|k| = |k(t)| " k0t2 and (31) we obtain the following bound on the exponent of the lhs of
the inequality (34)

(
A(St )

16π

)2 ∫

St

k2e−σ sin θ dθ dφ " A2
1k2

0

8A0
t4. (35)

Let x = A2
1k2

0t4/8A0. Then if t0 is sufficiently small we have 0 < x " A2
1k2

0t4
0/8A0 " 1 and

therefore ex " 1 + 2x. Use now (35) in (33), then ex " 1 + 2x and finally again the bound
A(St ) " A1 to obtain

A(St ) ! 8π |J(St )| −
A3

1k2
0

4A0
t4.

The claim follows by defining 80 = A3
1k2

0/4A0. #
We are ready for the proof of theorem 1. We recall first the setup of the proof. We assume by

contradiction that there is an asymptotically flat data set ($; g, K) on which there is an extreme
Kerr-throat sphere. Then, as was explained, one can always consider a data set (1; g, K)

(constructed from the data ($; g, K)) where (1; g) is a compact manifold with strictly mean
convex boundary and having an extreme Kerr-throat sphere SH in its interior. Moreover there
exists a positive solution N0 to the Lapse equation on 1 which is not proportional to αT over the
extreme sphere. The data (1; g, K) is embedded in a space-time and we consider its evolution
under the vector field V as in (26) which gives us an axisymmetric flow (1; g(t), K(t)).

Proof of theorem 1. Let t0 and 80 be as in proposition 5 when one chooses A1 = Ag(0)(SH ).
Let t be a time in (0, t0). Below we will work on (1; g(t), K(t)). Therefore keep in mind that
all the quantities, in particular areas, are found from (g(t), K(t)).

First we observe that the infimum of the areas of all the surfaces isotopic to SH is non-zero.
Indeed for any surface S′ isotopic to SH we have

0 < |J(SH )| = |J(S′)| = 1
8π

∣∣∣∣

∫

S′
K(ξ , ς ) dA

∣∣∣∣ " 1
8π

‖K‖L∞‖ξ‖L∞A(S′).
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Then, following [11] (theorems 1 and 1’) there is a sequence of surfaces {S′
l}, with each S′

l
isotopic to SH , converging in measure to n1S1 + · · · + nkSk, where {S1, . . . , Sk} is a set of
compact and embedded surfaces7, 8. Moreover the infimum of the areas of all the surfaces
isotopic to SH is equal to n1A(S1) + · · · + nkA(Sk). In particular A(Si) " A(SH ) " A1 (this
upper bound is needed to apply later proposition 5). If one of the surfaces, say Si, is orientable,
then it is stable and therefore axisymmetric (see section 2.6). In such case there are n+

i ! 0,
n−

i ! 0 with ni = n+
i + n−

i , indicating how many times the sequence {S′
l} ‘wraps around’ the

oriented Si with one orientation and how many with the opposite orientation. Precisely, for
any two-form χ supported on a small neighborhood of the oriented surface Si, we have

lim
∫

S′
l

χ =
(
n+

i − n−
i

) ∫

Si

χ .

If on the other hand one of the surfaces, say Si, is non-orientable then for any two-form
supported in a small neighborhood Si we have

lim
∫

S′
l

χ = 0. (36)

Note that if all the Si’s were non-orientable, then using (36) with χ = ∗K(ξ ,−), we would
get J(SH ) = J(S′

l ) = lim J(S′
l ) = 0 which is not possible. We deduce that at least one of Si’s

has to be orientable (this fact is not essential). Let us order the surfaces in such a way that
{S1, . . . , S j}, j ! 1 are the orientable (and oriented) and {Sj+1, . . . , Sk} are the non-orientable.
We have

|J(SH )| = lim |J(S′
l )| =

∣∣∣∣∣

i= j∑

i=1

(
n+

i − n−
i

)
J(Si)

∣∣∣∣∣ "
i= j∑

i=1

ni|J(Si)| "
i= j∑

i=1

ni

8π
A(Si) + O(t4)

" 1
8π

A(SH ) + O(t4) " |J(SH )| −
A′′

N0
(SH )

16π
t2 + O(t3),

where A′′
N0

(SH ) > 0 and where to obtain the inequality between the fourth and fifth terms we
have used the proposition 5 and to obtain the inequality between the sixth and seventh terms
we have used proposition 3. We obtained thus a contradiction for short times. This finishes the
proof of theorem 1. #

3.3. Proof of theorem 2

In the following sections the reader may benefit from the ‘quotient’ viewpoint on the geometry
of ($, g), where ($, g), as in the hypothesis of theorem 2, is axisymmetric and diffeomorphic
to S2 × R.

Recall that the group U (1) acts by isometries and that the set of fixed points consist
of two connected and complete one-dimensional manifolds (the axes), and therefore each
diffeomorphic to R. The quotient of $ by the action, denoted by $̃ is diffeomorphic to
[0, 1] × R, where S := {0} × R and N := {1} × R are the pair of ‘South’ and ‘North’ axis.
The set of both axis will be denoted as before by P = S ∪ N and the topological interior by
$̃◦ := $̃ \P = $̃ \ ∂$̃. We denote the projection by 7 (in particular 7($) = $̃). Denote by
λ2 the square norm of the axisymmetric Killing field and let g̃ be the two dimensional quotient
metric on $̃◦, namely, if w̃ = 7(w) and ṽ = 7(v) with w, v tangent vectors at p ∈ $ \ P ,
then at p̃ = 7(p) we have

g̃(w̃, ṽ) = g(w, v) − g(ξ , w)g(ξ , v)

λ2
.

7 A very accurate description of the relation between the sequence {S′
l} and the surfaces S1, . . . , Sk is given in remark

(3.27) of [11].
8 Namely for every function f on 1 we have lim

∫
S̄l

f dA =
∑

ni
∫

Si
f dA.
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Figure 4. Representation of the ‘quotient viewpoint’ of the geometry of ($, g) used in
the proof of theorem 2.

The metric g̃ extends smoothly to $̃ [7]. Every axisymmetric sphere S projects into a one-
dimensional manifold diffeomorphic to [0, 1] starting and ending g̃-perpendicularly to the
axis (see figure 4). An axisymmetric sphere is contractible inside $ iff the projection starts
and ends in the same axis. Axisymmetric torus project into closed curves inside $̃◦ and
are therefore contractible in $. Besides spheres and tori, there are no more orientable
axisymmetric boundary-less surfaces. Axisymmetric discs project into one-dimensional
manifolds diffeomorphic to [0, 1], starting g̃-perpendicularly at an axis and ending at an
interior point. We will use the notation βN,S for projected axisymmetric spheres starting in N
and ending in S, and βN( p̃) (respectively βS( p̃)) for projected discs starting at p̃ and ending
at N (resp. S). Observe that these curves are embedded. All this is shown in figure 4.

Let β(s̃) be a curve in $̃ parametrized with respect to g̃ arc-length, then

A(7−1(β)) = 2π

∫ s1

s0

λ(β(s̃)) ds̃.

In other words the area is equal to the length of β with respect to the conformal metric
¯̃g = (2πλ)2g̃. In particular axisymmetric minimal surfaces (which minimize area locally) in
$ correspond to ¯̃g-geodesics in $̃◦.

The hypothesis of theorem 2 translates into the following two conditions on the quotient
manifold.

C1. There is a ¯̃g-geodesic γ N,S
H of ¯̃g-length AH := 8π |J|.

C2. The ¯̃g-length of any curve βN,S is greater or equal than AH .

(We will use AH instead of 8π |J| from now on.) The curve γ N,S
H divides $̃ into two

smooth manifolds $̃1 and $̃2 each diffeomorphic to [0, 1] × R+
0 (R+

0 = [0,∞)). Denote
$i = 7−1($̃i). At any point p̃ ∈ $̃i, with i either 1 or 2, define

Ai( p̃) = inf
{
length ¯̃g(β

N,S( p̃)), βN,S( p̃) ⊂ $̃i
}
,

AN
i ( p̃) = inf

{
length ¯̃g(β

N( p̃)), βN( p̃) ⊂ $̃i
}
,

and similarly for AS
i ( p̃). We also define

A( p̃) = inf
{
length ¯̃g(β

N,S( p̃)), βN,S( p̃) ⊂ $̃
}
. (37)

In the original space, Ai( p̃) is just the infimum of the areas of the axisymmetric spheres in $i

intersecting N and S and containing the orbit 7−1( p̃). Similarly AN
i ( p̃) (resp. AN

i ( p̃)) is the
infimum of the areas of the axisymmetric discs in $i intersecting N (respctively S) and with
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boundary 7−1( p̃). By C2 we have Ai( p̃) ! AH for all p̃. The reader can check easily also that
Ai( p̃) ! AN

i ( p̃) + AS
i ( p̃). These quantities are irrelevant outside axisymmetry.

The use of the quotient picture has considerable advantages but also shortcomings. As
a general rule the analysis away from the axis is more conveniently done in the quotient
geometry. At the axis however the metric ¯̃g is singular and it is better to stick to the original
space. For this reasons we will keep a mixed usage.

We state now a basic proposition concerning area-minimizing sequences of discs that will
be required to prove lemma 1 on which the proof of theorem 2 relies. To avoid further delays
for the proof of theorem 2 we postpone the proof of the proposition until the appendix. We use
the notation DN(C) and DS(C) as in section 2.4 for axisymmetric discs intersecting N and S
respectively.

Proposition 6. Let i be 1 or 2. Let 7(C) = p̃ ∈ $̃◦
i . Then AN

i ( p̃) is equal to either.

D1. The area of a stable minimal disc DN(C) = 7−1(γ N( p̃)), or.
D2. The area of a stable minimal disc DS(C) = 7−1(γ S( p̃)) plus AH.

Moreover there is an area minimizing sequence of discs DN
j (C) = 7−1(βN

j ( p̃)), j ! 1
converging (in measure) to either

DN(C) = 7−1(γ N( p̃)) in case D1 holds, or,
DS(C) ∪ SH = 7−1(γ S( p̃)) ∪ 7−1(γ N,S

H ) in case D2 holds.

A similar statement holds for AS
i ( p̃) by changing N → S and S → N.

Lemma 1. Let i be 1 or 2. If for all p̃ ∈ $̃i it is Ai( p̃) = AH then ($i; g, K) is half of the
extreme Kerr-throat of angular momentum |J| = AH/8π .

Proof. Before we start recall that any stable minimal surface S with A(S) = 8π |J(S)| is
an extreme Kerr-throat sphere [9]. We prove first that $i is foliated by extreme Kerr-throat
spheres, or, in the quotient space, that $̃i is foliated by ¯̃g-geodesics of length AH starting
g̃-perpendicularly to N and ending g̃-perpendicularly to S. In this first part of the proof
we work in the quotient space. Let p̃ ∈ $̃◦

i . By hypothesis Ai( p̃) = AH and recall that
Ai( p̃) ! AN

i ( p̃) + AS
i ( p̃). Therefore, by proposition 6, AN

i ( p̃) and AS
i ( p̃) are realized by ¯̃g-

geodesics γ N( p̃) and γ S( p̃) respectively (case D1 must hold) and the sum of their ¯̃g-lengths
is less or equal than AH .

If γ N( p̃) and γ S( p̃) intersect only at p̃ (where they start) and they do not have the same
tangent line at p̃ then γ N( p̃) ∪ γ S( p̃) could be rounded up at the vertex p̃ to a curve βN,S with
¯̃g-length less than AH violating C2. On the other hand γ N( p̃) and γ S( p̃) cannot intersect in a
point other than p̃ because in this case one could again construct a curve βN,S of length less
than AH which is not possible9. Thus γ N,S( p̃) := γ N( p̃) ∪ γ S( p̃) is a ¯̃g-geodesic of length
AH or, the same, 7−1(γ N( p̃) ∪ γ S( p̃)) is an extreme Kerr-throat sphere. We claim that for
any p̃1 0= p̃2 in $̃◦

i the geodesics γ N,S( p̃1) and γ N,S( p̃2) must be either equal or disjoint.
Indeed if they are not disjoint then when they intersect they would have to do transversely
and one could again easily construct a curve βN,S( p̃) of ¯̃g-length less than AH violating C2.
The set {γ N,S( p̃), p̃ ∈ $◦

i } is thus the desired foliation of $̃i by ¯̃g-geodesics of length AH and
{7−1(γ N,S( p̃)), p̃ ∈ $◦

i } is the desired foliation of $i by extreme Kerr-throat spheres.

9 βN,S would be constructed from γ N( p̃, τ ), τ ∈ [0, τN] and γ S( p̃, τ ), τ ∈ [0, τS] as follows (τ here is
arc-length and therefore τN + τS ! AH ). Let τN

∗ be the greatest τ such that γ N ( p̃, τ ) is a point also of γ S.
Suppose that γ N( p̃, τN

∗ ) = γ S( p̃, τS
∗ ) which defines an τS

∗ . Then define βN,S(τ ) = γ S( p̃, τ ) for τ ∈ [0, τS
∗ ] and

βN,S(τ ) = γ N( p̃, τ − τS
∗ + τN

∗ ) for τ ∈ [τS
∗ , τN − τN

∗ + τS
∗ ]. This curve has length less than AH but is not C1 at

βN,S(τS
∗ ). Then round it off at this point to have and embedded curve βN,S

1 of length less than AH .
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What we have so far is a foliation by extreme Kerr-throat spheres and from this information
we want to deduce that there are coordinates (r, θ ,ϕ) on $i on which the metric g has exactly
the expression (3). We work now in the original manifold $i (not in the quotient). Let r
be a smooth function, constant along the leaves of the foliation and with non-zero gradient
everywhere. One can take for instance the function r which at a point p is equal to the volume
enclosed by the leaf passing through p and ∂$i. The flow induced by the vector field

Y := ∇ ir
|∇r|2

,

takes leaves into leaves because dr(Y ) = 1 (and indeed orbits into orbits because, can be
seen, Y is U (1)-invariant). Let (θ ,ϕ) be the areal-coordinates on SH . Extend them to all $i

by Lie dragging, namely define them by imposing Y (θ ) = 0, Y (ϕ) = 0. In this way (r, θ ,ϕ)

are coordinates on $i. Let hAB(r̄) be the metric components of the two-metric induced on the
leaf {r = r̄} in the coordinates (θ ,ϕ). Then we have ∂rhAB = 0, because every leaf is totally
geodesic. Thus hAB(r) = hAB(0) which is the metric of SH in areal-coordinates, namely (from
(3))

h(0) =
(

4|J| sin2 θ

1 + cos2 θ

)

dϕ2 + |J|(1 + cos2 θ ) dθ2.

Because of ∂rhAB = 0 the first and second variation of the area of the leaves along Y is zero.
We deduce that at every leaf we must have ∂r = Y = c(r)αT ς where ς is a g-unit-normal
field to the leaf. It follows that one can redefine r to have ∂r = αT ς over every leaf. As
〈∂r, ∂θ 〉g = 〈∂r, ∂ϕ〉g = 0, the metric g takes in these coordinates the form

g = α2
T dr2 + hAB(0),

which is (3). That the second fundamental form takes the form (4) is a direct consequence of
the fact that every leaf of the foliation is an extreme Kerr-throat sphere of the same area. #

We are ready to prove theorem 2.

Proof of theorem 2. To start, let $1 and $2 be the closures of the two connected components
of $ \ SH . For i = 1, 2, let Āi = sup{Ai( p̃), p̃ ∈ $i}. Now, if for i = 1, 2, Āi = AH then by
lemma 1 the data has to be the extreme Kerr throat and we are done. Assume then that one
of the Āi’s is greater than AH . If say Ā1 = AH (but Ā2 > AH) then again by lemma 1 the data
over $1 is half of the extreme Kerr-throat data. In this case one can easily make a doubling
of the data on $2 and construct a new data on a manifold $′ also diffeomorphic to S2 × R
and having an extreme Kerr-sphere S′

H dividing $′ in sectors $′
1 and $′

2 with Ā′
1 > AH and

Ā′
2 > AH . We can then assume without loss of generality that Āi > AH for i = 1, 2. We will

see that this leads to a contradiction.
We observe now that the set of points E = { p̃ ∈ $̃◦, A( p̃) = AH} (A( p̃) as in (37)) is

(i) a closed set, and (ii) a union of projected extreme Kerr-throat spheres. That E is closed
follows from the fact that A( p̃) is continuous with respect to p̃ 10. That E is a union of projected
extreme Kerr-throat spheres follows from the fact, shown inside the proof of lemma 1, that if
A( p̃) = AH then p̃ lies in a projected extreme Kerr-throat sphere.

10 This is a consequence of the fact that for any two points p̃ and q̃ we have |A( p̃) − A(q̃)| ! 2dist ¯̃g( p̃, q̃). The reader
can check this by proving first that for any βN,S( p̃) we have, length ¯̃g(β

N,S( p̃)) + 2dist ¯̃g({β
N,S( p̃)}, q̃) " A(q̃)

and therefore that length ¯̃g(β
N,S( p̃)) + 2dist ¯̃g( p̃, q̃) " A(q̃) because dist ¯̃g( p̃, q̃) " dist ¯̃g({β

N,S( p̃)}, q̃). Here
dist ¯̃g({β

N,S( p̃)}, q̃) is the ¯̃g-distance from the point q̃ to the set curve βN,S( p̃) (as a set). Taking the infimum
among all βN,S( p̃) we deduce A( p̃) + 2dist ¯̃g( p̃, q̃) " A(q̃).
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Now, for i = 1, 2 let Si be a sphere with poles Ni ∈ N and Si ∈ S and embedded
in $i \ 7−1(E ). Let also δ > 0 be such that (i) Tg(Si, 4δ) ⊂ ($ \ 7−1(E )), and (ii) one
can construct g-Gaussian coordinates inside Tg(Si, 4δ). Let 1 be the region enclosed by S1

and S2 including the spheres themselves and observe that SH ⊂ 1◦. Let N0 be a positive
solution of the Lapse equation in the region 14δ := 1 ∪ Tg(S1, 4δ) ∪ Tg(S2, 4δ) which is
not proportional to αT over SH as is provided by proposition 4. Transport now the region
13δ := 1 ∪ Tg(S1, 3δ) ∪ Tg(S2, 3δ) inside the space-time following the vector field V as we
did in (26). Then, as was explained in the last paragraph of section 2.1, by transporting 13δ we
induce a flow (g(t), K(t); N(t), X (t)) over 13δ for t ∈ [0, t0] and with t0 small. We will use this
flow in the argumentation below. We consider now a smooth path of spheres Si(t), t ∈ [0, t0]
and i = 1, 2 and coinciding at time zero with the Si’s introduced before, namely, Si(0) = Si, for
i = 1, 2. Denote by Ni(t) and Si(t) the poles of Si(t) and define 1(t) as the region enclosed by
S1(t) and S2(t). Chose t0 smaller if necessary such that for any t ∈ [0, t0] there are g(t)-Gaussian
coordinates in Tg(t)(Si(t), 2δ). Now, in 12δ(t) = 1(t) ∪ Tg(t)(Si(t), 2δ) ∪ Tg(t)(S2(t), 2δ) we
will consider a flow of axisymmetric metrics g∗(t) enjoying the following three properties for
every t ∈ [0, t0],

(1) g∗(t) = g(t) on 1δ(t) = 1(t) ∪ Tg(t)(Si(t), δ) ∪ Tg(t)(S2(t), δ),
(2) g∗(t) ! g(t) on 12δ(t).
(3) The g∗-mean curvature of the boundary of the region 12δ(t) is strictly positive in the

outward direction, namely the boundary is strictly mean convex.

The flow of metrics g∗(t) can be explicitly given for instance as follows. On everyone
of the two connected components of 12δ(t) \ 1(t) we write the metric g(t) in g(t)-Gaussian
coordinates as g(t) = dr2 + hi(t), i = 1, 2. Then make

g∗(t) :=
{

g(t) on 1δ(t),
dr2 + f 2(r)hi(t), on 12δ(t) \ 1δ(t), (δ < r < 2δ),

where f (r) is the real and time independent function

f (r) = 1 + e
[ 1

2δ+ε−r − 1
r−δ

]
,

for ε > 0 small enough making the boundary strictly convex. With this setup at hand we move
to obtain the main contradiction. By proposition 3 and our choice of N0 we have Ä(SH ) < 0
at time zero. Because of this we can chose t0 smaller if necessary to have Ag(t)(SH ) < AH for
any 0 < t < t0. By [11] (theorems 1 and 1’) there is, for every 0 < t " t0, a g∗(t)-stable,
axisymmetric and area-minimizing sphere St inside 12δ(t) of g∗(t)-area less than AH . We claim
that, making t0 smaller if necessary, the spheres St must lie inside 1δ(t) which is a region
where by construction the metric g∗(t) is equal to g(t). This would prove the g(t)-stability of
the St that will be useful later. We show the claim now.

Let 0 < R < δ/2 be small enough that for every t ∈ [0, t0] the Riemannian balls
(Bg(t)/R2 (Ni(t), 2), g(t)/R2) and (Bg(t)/R2 (Si(t), 2), g(t)/R2) are ε0-close11 in C2 to the flat
metric in BR3 (o, 2) where ε0 is a constant as in proposition 2. Note that because R < δ/2 then
the balls are included in Tg(t)(S1(t), δ) ∪ Tg(t)(S2(t), δ) and that of course Bg(t)/R2 (Ni(t), 2) =
Bg(t)(Ni(t), 2R) and Bg(t)/R2 (Si(t), 2) = Bg(t)(Si(t), 2R). In what follows we let 0 < L < 1
be as in proposition 2. We also make 1−δ(t) = 1(t) \ (Tg(t)(S1(t), δ) ∪ Tg(t)(S2(t), δ)).

Now, by construction, the closure of the region 12δ(0) \ (1−δ(0) ∪ Tg(0)(P, RL)) is
included in $ \ 7−1(E ). Due to this there is > > 0 such that for every sphere S with poles
in N and S and intersecting 12δ(0) \ (1−δ(0) ∪ Tg(0)(P, RL)) has g(0)-area greater or equal
than AH + >. By continuity, and making t0 smaller if necessary, we can assume that for every

11 To be precise in the coordinates (x1, x2, x3) as in section 2.5.
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Figure 5. Representation of the construction in the argument by contradiction in the
proof of theorem 2.

t ∈ [0, t0] every sphere S (with poles in N and S) intersecting 12δ(t)\ (1−δ(t)∪Tg(t)(P, RL))

has g∗(t)-area greater or equal than AH + >/2. But the area-minimizing spheres St have
g∗(t)-area less than AH and therefore if the St do not lie entirely in 1δ(t) then they must
necessarily intersect either the ball (Bg(t)(Ni(t), RL), g(t)) or the ball (Bg(t)(Si(t), RL), g(t))
and at least one of the connected components of the intersection must be a cylinder with
two boundary components (see figure 5). This violates proposition 2. Thus St ⊂ 1δ(t).
Now that we have proved that St ⊂ 1δ(t) and therefore the g(t)-stability of the St we
can proceed in the same way as in proposition 5 to show that there is 80 > 0 such
that for any t ∈ (0, t0] we have A(St ) = Ag(t)(St ) ! 8π |J| − 80t4. On the other hand
A(St ) = Ag(t)(St ) " Ag(t)(SH ) = AH + Ä(SH )t2/2 + O(t3). This shows a contradiction
because AH = 8π |J| and Ä(SH ) < 0. #

Appendix

Proof of proposition 1. We prove first item (1) which is true for any value of L chosen
between (0, 1) (indeed we just reproduce here the classical proof). Let D be a minimal disc
with boundary C. Say z|C = zC. Then the function z− zC is harmonic on D and (z− zC)|C = 0.
It follows that z = zC all over D and therefore that D is the disc enclosed by C in the plane
{z = zC}. Another proof, best suited for extensions, can be obtained along the following lines
(we just provide the sketch). Let D(C) be the disc enclosed by C in the plane {z = zC}. Let
o(C) = (0, 0, zC) be its center and R(C) its radius. Let B+ = BR3 (o(C), R(C)) ∩ {z > zC} and
B− = BR3 (o(C), R(C)) ∩ {z < zC}. Now, the disc D(C) is minimal and, by a direct inspection
of the stability operator, also strictly stable. Using the strict stability one can construct a
smooth foliation of B+ by discs {D′(C)}, each with boundary C, and strictly convex (in the
direction of increasing z) and similarly for B−. In addition one can construct a foliation of
BR3 (o, 1)\BR3 (o(C), R(C)) by round spheres {S′}. We have thus a foliation of BR3 (o, 1)\D(C)

by strictly convex surfaces, acting as barriers, and preventing the existence of any other minimal
disc with boundary C inside BR3 (o, 1).

We prove now item (2). First we prove that there are no stable surfaces in the class S0.
This again is true for any value of L chosen in (0, 1). This can be proved as in item (1) by
showing that if there is one then the function z has to be constant on it. Another proof, more
independent of the flatness of the ambient space R3 and therefore best suited for extensions is
the following. Assume again that there is one such surface. Then note that there is a cylinder
{ρ = ρ0} where ρ2 = x2 + y2, enclosing the surface and tangent to it at least in one orbit (a
circle). Such cylinder has strictly mean convex boundary which implies that at the points of
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tangency the minimal surface must have positive mean curvature (in the outgoing direction
from the axis) which is absurd. Note that instead of cylinders one could have used spheres to
reach a similar conclusion.

We prove now that for some L appropriately chosen there are no stable surfaces in the
class S2. This requires a bit more effort. Recall that the class S2 consist of axisymmetric
cylinders with boundary in BR3 (o, 1). From now on we let S be an stable axisymmetric
cylinder with boundary in ∂BR3 (o, 1). The reader should keep that in mind because it will not
be repeated. If S ∩ BR3 (o, R) 0= ∅ for some R > 0 and q ∈ S ∩ BR3 (o, R) then we will denote
by

[
S ∩ BR3 (o, R)

]c.c.
q to the connected component of S ∩ BR3 (o, R) containing q.

In the following we will use two standard results in minimal surfaces that we take form
[8]. We refer the reader to this reference for full details. We first observe that there is a universal
constant c > 0 such that for any S intersecting BR3 (o, 1/8) and q in S ∩ BR3 (o, 1/8) we have

sup
{
|-|2(p), p ∈

[
S ∩ BR3 (o, 1/4)

]c.c.
q

}
" 4c. (A.1)

This is the result of using corollary 2.11 in page 79 of [8] with r0 = 7/8, σ = 1/2 and observing
in there that BR3 (o, 1/4) ⊂ BR3 (q, r0 − σ ). This is an important estimate that will be used
crucially below. Let now L0 = min{1/(4

√
64c), 1/4} and observe that 4c " 1/(16(16L2

0))

and that L0/2 " 1/8. From this and (A.1) we obtain that for any S intersecting BR3 (o, L0/2)

and for any q in S ∩ BR3 (o, L0/2) we have

16L2
0 sup

{
|-|2(p), p ∈

[
S ∩ BR3 (o, L0)

]c.c.
q

}
" 1

16 . (A.2)

Let L be any number in (0, L0/8). We will see at the end of the argumentation below that if
L < L0/20 then S ∩ BR3 (o, L) = ∅. At the moment just assume that 0 < L < L0/8. We use
now the estimate (A.2) in conjunction with lemma 2.4 in page 74 of [8] (used with s := L0/4,
$ :=

[
S ∩ BR3 (o, L0)

]c.c.
q and x := q) to conclude that for any surface S intersecting BR3 (o, L)

and for any q in S ∩ BR3 (o, L) the following two facts hold.

(1) BS(q, L0/2) is a graph of a function u on a domain of TqS ⊂ R3, where BS(q, L0/2) is
the intrinsic ball inside S (with the induced metric) of center q and radius L0/2. Moreover
|∇u| " 1.

(2) The connected component of S∩BR3 (o, L0/4) containing q, namely
[
S∩BR3 (o, L0/4)

]c.c.
q ,

lies inside BS(q, L0/2) and therefore is a graph by the item before.

For any surface S such that S ∩ BR3 (o, L) 0= ∅ denote to simplify notation C =
[S ∩ BR3 (o, L0/4)]c.c

q . Thus C is a cylinder whose boundary consists of two orbits, C1 and C2,
in ∂BR3 (o, L0/4). Denote by 7TqS the projection into the plane TqS ⊂ R3. Then 7TqS(C ) is an
annulus with boundary components 7TqS(C1) and 7Tq(S)(C2). Moreover 7Tq(S)C(q) (C(q) here
is the orbit passing through q) encloses either 7TqS(C1) or 7Tq(S)(C2). Say, for concreteness,
that it encloses 7Tq(S)(C2). Observe also that length(7TqS(C(q))) " length(C(q)) " 2πL
where the last inequality is because q ∈ BR3 (o, L). Let α be the curve in C with constant
azimuthal angle ϕ and joining q to C2 and observe that 7TqS(α) is a straight segment joining
q to 7TqS(C2). Then because |∇u| " 1 we have length(α) " 2length(7TqS(α)) " 2L where
the last inequality is due to fact that the length of a straight segment inside an ellipse with
perimeter less than 2πL has length less than L. But on the other hand q ∈ BR3 (o, L) and
∂C ⊂ ∂BR3 (o, L0/4) and therefore length(α) ! L0/4 − L. These two inequalities for the
length of α are incompatible if L < L0/20. Hence there are no stable minimal surfaces S in
the family S2 intersecting BR3 (o, L) if L < L0/20. #

The proof of proposition 2 is done in the same way as in proposition 1 and will not be
included here. Let us prove now corollary 3.
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Proof of corollary 3. In several parts of the proof we will use the ‘quotient picture’ as explained
in section 3.3.

Item (1). By homogeneous regularity there is ε1(ρ0, µ0, µ1) such that for any 0 < ε " ε1,
the set

(∂T (∂$, ε)) \ ∂$,

is smooth and strictly convex with mean curvature greater or equal than µ0/2. Thus these
surfaces act as barriers preventing the existence of minimal surfaces S at a distance less than
ε1 from ∂$.

Item (2). By homogeneous regularity there is ε4(ρ0, µ0, µ1) > 0 such that for any
0 < ε < ε4 the surface

(∂Tg(P, ε)) ∩ ($ \ Tg(∂$, ε1)),

is smooth (with boundary) and of mean curvature greater or equal than 1 (in the outgoing
direction from the axes P). Note that as ε → 0 the mean curvature goes to infinity (∼ 1/ε). In
particular, because these surfaces act as barriers there are no minimal surfaces lying entirely
inside

Tg(P, ε4) ∩ ($ \ Tg(∂$, ε1)).

We will work now in the quotient and follow the notation of section 3.3. By homogeneous
regularity again, there is R(ρ0, ε1, ε4) > 0 such that for any p̃ in $̃\7

(
Tg(P, ε4)∪Tg(∂$, ε1)

)

we have

B ¯̃g( p̃, R) ⊂
(
$̃ \ 7

(
Tg

(
P,

ε4

2

)
∪ Tg

(
∂$,

ε1

2

)))
,

and moreover the metric ¯̃g/R2 in B ¯̃g/R2 ( p̃, 1) = B ¯̃g( p̃, R) is sufficiently close in C2 to the
flat metric in R2 that every ¯̃g/R2-geodesic (or, the same, every ¯̃g-geodesic) passing through p̃
reaches the boundary of B ¯̃g/R2 ( p̃, 1) and therefore has ¯̃g/R2-length greater than 1 (or, the same,
the ¯̃g-length is greater or equal than R). Now, for every axisymmetric minimal surface S, 7(S)

is a ¯̃g-geodesic and A(S) = length ¯̃g(7(S)). Moreover by what was said before there is always
a point p̃ of 7(S) in $̃ \ 7

(
Tg(P, ε4) ∪ Tg(∂$, ε1)

)
. It follows that A(S) ! R. The item (2)

follows by defining A0 := R.
Item (3). By homogeneous regularity there exists R1(ρ0, ε1, ε4) > 0 such that for any

p ∈ P \ Tg(∂$, ε1/2) the metric g/R2
1 in Bg/R2

1
(p, 2) is ε0-close in C2 to the flat metric in R3

where ε0 is as in proposition 2. Then we define ε2 := LR1 where L is as in proposition 2. We
show now that with this ε2 we have all the properties that we desire for item (3). The cylinder
(with boundary)

(∂Tg(P, ε2)) ∩ Bg(p, R1) = (∂Tg/R2
1
(P, L)) ∩ Bg/R2

1
(p, 1),

is foliated by U (1)-orbits (circles) and for everyone, one can consider the area minimizing
disc according to proposition 2 and with boundary the orbit. This construction can be done for
every point p in P \ Tg(∂$, ε1/2) which gives us the set of all the discs we are looking for.
Now, let S be a stable and axisymmetric minimal surface embedded in $. If S∩Tg(P, ε2) 0= ∅
then there is p ∈ P such that

S ∩ Bg/R2
1
(p, L) 0= ∅.

But then by proposition 2, S ∩ Bg/R2
1
(p, L) must be one of the discs we defined before. Finally

note that if an axisymmetric compact and boundary-less surface intersects the axes P then it
must do twice and the surface must be a sphere.

Item (4). By standard minimal surfaces estimates [8] the Gaussian curvature K of any
disc D as in item (4) and with respect to the induced metric from g/R2

1 is uniformly bounded.
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Consider now polar coordinates in D as defined in section 2.4. Then, by Gauss–Bonnet we
have

2π − dl(s)
ds

=
∫ s

0
K(s̄)l(s̄) ds̄.

From this, the estimate |l(s) − 2πs| " c0(ρ0, µ0, µ1)s2 easily follows. #

Proof of proposition 6. Let i be 1 or 2. Let {Sm} be a sequence of axisymmetric spheres in
$i. Denote by 1m the (closed) set enclosed by SH and Sm. Assume that the sequence is such
that 1m ⊂ 1m+1 and distg(SH, Sm) → ∞. Let {δm} be a positive sequence in such a way that
(for every m) δm is sufficiently small that we have g-Gaussian coordinates well defined inside
Tg(Sm, δm) \ 1m. Thus on Tg(Sm, δm) \ 1m we can write

g = dr2 + hm,

where r(p) = dist(p, Sm) > 0 and hm(∂r,−) = hm(−, ∂r) = 0. Define 1δm = 1m ∪
Tg(Sm, δm). On 1δm we define the axisymmetric metric g∗

m

g∗
m =

{
g on 1m,

dr2 + f (r)2hm on Tg(Sm, δm) \ 1m
(A.3)

and where f (r) is the scalar function

f (r) = 1 + e
[

1
δm+εm−r − 1

r

]

,

where εm is, for every m, small enough to make the boundary {r = δm} strictly convex. Observe
that g∗

m = g on 1m and that g∗
m ! g on 1δm (because f ! 1).

We define AN
i,m( p̃), in the same way as AN

i ( p̃), as the infimum of the g∗
m-areas of the

axisymmetric discs DN(C), C = 7−1( p̃), inside 1δm . Claim 1: AN
i,m( p̃) is realized by either.

D1’ The g∗
m-area of a disc DN(C) = 7−1(γ N( p̃)) ⊂ 1δm , or by.

D2’ The g∗
m-area of a disc DS(C) = 7−1(γ S( p̃)) ⊂ 1δm plus AH .

The proof of the claim 1 is as follows. Let {DN
j (C)} = {7−1(βN

j ( p̃))} be a g∗
m-area minimizing

sequence of discs in 1δm , that is, a sequence for which we have

lim Ag∗
m

(
DN

j (C)
)

= lim length ¯̃g∗
m
(βN( p̃)) = AN

i,m( p̃),

(whereas we defined ¯̃g we define here ¯̃g∗
m := λ∗2g̃∗

m, λ∗2 = 〈ξ ∗
m, ξ ∗

m〉g∗
m

the g∗
m-norm squared

of the rotational Killing ξ ∗
m of the metric g∗

m). On general grounds12 the sequence of area
minimizing discs converges in measure to a disc with boundary C (the solution of the ‘Plateau’s
problem’) and, possibly, to a finite set of axisymmetric compact and non-contractible stable
minimal surfaces, which because of the geometry of 1δm must be axisymmetric spheres. Thus
the limit is either.

P1. A stable minimal disc DN(C) = 7−1(γ N( p̃)), or.
P2. A stable minimal disc DS(C) = 7−1(γ S( p̃)), or.
P3. A stable minimal disc DN(C) = 7−1(γ N( p̃)) plus a set of stable axisymmetric
minimal spheres Sk = 7−1(γ N,S

k ), k = 1, . . . , k1, or.

12 Despite it naturalness this does not follow exactly from the well known result in Riemannian geometry that
a minimizing sequence of curves in a complete boundary-less Riemannian manifold with fixed extreme points
converges in measure to a geodesic because on one side the manifold $̃ has boundary and on the other hand the
metric ¯̃g∗

m is singular at the axis P (the boundary of $̃. Although with more work a proof can be given along these
lines, a rigorous proof follows from the standard results on geometric measure theory on area minimizing sequences
of discs [11, 12].
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P4. A stable minimal disc DS(C) = 7−1(γ S( p̃)) plus a set of stable axisymmetric
minimal spheres Sk = 7−1(γ N,S

k ), k = 1, . . . , k2.

Of course to guarantee the existence of the limit one uses that (1δm , g∗
m) has one totally

geodesic boundary (SH) and one strictly convex boundary. We show now that the cases P2 and
P3 cannot occur and that case P3 could occur but when does then it does only with k2 = 1
and Ag∗

m
(S1) = length ¯̃g∗

m
(γ N,S

1 ( p̃)) = AH . We show this below, which completes the proof of
the claim 1.

Case P3 cannot occur for in that case the (constant) sequence of curves {β ′N
j ( p̃) = γ N( p̃)}

has

lim length ¯̃g∗
m

(
β ′N

j ( p̃)
)

< lim length ¯̃g∗
m

(
βN

j ( p̃)
)
,

which is not possible because {βN
j ( p̃)} is by assumption a minimizing sequence.

We show now that the case P2 cannot occur. Let ε > 0 be small enough such that the
curve γ S( p̃) does not intersect T ¯̃g∗

m
(N , ε) where the tubular neighborhood is inside 1∗

m. If the
sequence {βN

j ( p̃)} converges in measure to γ N( p̃) then it must be

lim length ¯̃g∗
m

(
βN

j ( p̃) ∩ T ¯̃g∗
m
(N , ε)

)
= 0.

But every curve from p̃ to N must intersect the tubular neighborhood in a curve (or a set of
curves) of total length at least ε. This gives a contradiction.

We finally analyze case P4. First we show that k2 = 1. Assume by contradiction that
k2 ! 2. Then one can consider a sequence of curves {β ′N

j ( p̃)} that would allow us to show that
the sequence {βN

j ( p̃)} was not minimizing. The sequence {β ′N
j ( p̃)} is constructed as follows.

Let {q1
j} and {q2

j} be sequences of points in γ S( p̃) and γ N,S
1 respectively converging to points

in the south axis S (i.e. the (south) end points of the curves γ N( p̃) and γ N,S
1 respectively).

Then β ′N
j ( p̃) is defined (starting from p̃) as γ N( p̃) until q1

j , then as a curve joining q1
j and q2

j

going very near the south axis S and then as the piece of γ N,S
1 that starts at q2

j and end at the
north point of it. The curve between q1

j and q2
j has to be chosen in such a way that its ¯̃g∗

m-length
goes to zero as j → ∞ (note that the pre-image of such curve under 7 becomes a very thin
tube joining 7−1(q1

j ) and 7−1(q2
j ) of small g∗

m-area). With this definition of {β ′N
j ( p̃)} we have

lim length ¯̃g∗
m

(
β ′N

j ( p̃)
)

= length ¯̃g∗
m
(γ S( p̃)) + length ¯̃g∗

m

(
γ N,S

1

)
< lim length ¯̃g∗

m

(
βN

j ( p̃)
)
,

which is impossible because by assumption {βN
j ( p̃)} was a minimizing sequence. That

length ¯̃g∗
m
(γ N,S

1 ) = AH is a consequence of the fact that one can easily construct a sequence

of curves {β ′N( p̃)} (following a similar procedure as before) converging in measure to
γ S( p̃) ∪ γ N,S

H .
Claim 2: For every p̃ ∈ $̃◦

i and constant B > 0 there is m(B) such that for any
m ! m(B) and g∗

m-stable axisymmetric minimal disc Dm = DN
m(7−1( p̃)) = 7−1(γ N

m ( p̃))

or disc Dm = DS
m(7−1( p̃)) = 7−1(γ S

m ( p̃)), inside 1δm and intersecting Sm(B) we have

Ag(Dm ∩ 1m(B)) = Ag∗
m
(Dm ∩ 1m(B)) ! B.

The proof of the claim 2 is as follows. Let m and m(B) with m ! m(B) be arbitrary and
let Dm be a disc as in the hypothesis. By corollary 3, there is ε2 > 0 such that if Dm

intersects Tg(P, ε2) \ Tg(Sm(B), 1) then it intersects Tg(P, ε2) ∩ 1m(B) exactly in a small disc.
Therefore if Dm ∩ Sm(B) 0= ∅ then γ N

m ( p̃) or γ S
m ( p̃) (depending on the case) remains inside(

$̃i \ 7(Tg(P, ε2))
)

∩ 7(1m(B)) until entering 7(Tg(Sm(B), 1)) for the first time. By the
homogeneous regularity of the metric ¯̃g on $̃ \ 7(Tg(P, ε2) we conclude that if m(B) → ∞
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then necessarily length ¯̃g(γ
N
m ( p̃) ∩ 7(1m(B))) → ∞. The claim follows then from the identity

A(7−1(γ N
m ( p̃)) ∩ 1m(B)) = length ¯̃g(γ

N
m ( p̃) ∩ 7(1m(B))).

Now, let D̄N(C), 7(C) = p̃, be a fixed disc in $i. Let B = 2A(D̄N(C)) and m(B) as in
the claim (assume that m(B) is big enough that D̄N(C) ⊂ 1m(B)). Then for any m ! m(B) we
have

AN
i,m( p̃) " A(D̄N(C)) = B

2
.

It follows from the claim 2 that for any m ! m(B) the minimizers DN(C) (in case D1’) or
DS(C) (in case D2’) realizing AN

i,m( p̃), lie in 1m(B). Therefore for any m ! m(B) we have

AN
i,m( p̃) = AN

i,m(B)( p̃).

As limm→∞ AN
i,m( p̃) = AN

i ( p̃) we conclude that the minimizers DN(C) (in case D1’) or DS(C)

(in case D2’) realizing AN
i,m( p̃) are the minimizers claimed D1 or D2 in the statement of the

proposition. The rest of the claim in the proposition are automatic. #

References

[1] Aceña A, Dain S and Gabach Clément M E 2011 Horizon area-angular momentum inequality for a class of
axially symmetric black holes Class. Quantum Grav. 28 105014

[2] Amsel A J, Horowitz G T, Marolf D and Roberts M M 2009 No dynamics in the extremal Kerr throat J. High
Energy Phys. JHEP09(2009)044

[3] Andersson L, Eichmair M and Metzger J 2011 Jang’s equation and its applications to marginally trapped surfaces
Complex Analysis and Dynamical Systems IV: part 2. General relativity, geometry, and PDE (Contemporary
Mathematics vol 554) (Providence, RI: American Mathematical Society) pp 13–45

[4] Andersson L, Mars M and Simon W 2008 Stability of marginally outer trapped surfaces and existence of
marginally outer trapped tubes Adv. Theor. Math. Phys. 12 853–88

[5] Aronszajn N 1957 A unique continuation theorem for solutions of elliptic partial differential equations or
inequalities of second order J. Math. Pures Appl. 36 235–49

[6] Choquet-Bruhat Y and York J W Jr 1980 The Cauchy Problem (General relativity and gravitation vol 1)
(New York: Plenum) pp 99–172

[7] Chrusciel P T 2008 Mass and angular-momentum inequalities for axi-symmetric initial data sets: I. Positivity
of mass Ann. Phys. 323 2566–90

[8] Colding T H and Minicozzi W P II 2011 A Course in Minimal Surfaces (Graduate Studies in Mathematics
vol 121) (Providence, RI: American Mathematical Society)

[9] Dain S and Reiris M 2011 Area-angular-momentum inequality for axisymmetric black holes Phys. Rev.
Lett. 107 051101

[10] Jaramillo J L, Reiris M and Dain S 2011 Black hole area-angular-momentum inequality in nonvacuum
spacetimes Phys. Rev. Lett. D 84 121503

[11] Meeks W III, Simon L and Yau S T 1982 Embedded minimal surfaces, exotic spheres, and manifolds with
positive Ricci curvature Ann. Math. 116 621–59

[12] Simon L 1983 Lectures on geometric measure theory: Proceedings of the Centre for Mathematical Analysis
vol 3 (Australian National University, Australian National University Centre for Mathematical Analysis,
Canberra)

[13] Wald R M 1984 General Relativity (Chicago, IL: University of Chicago Press)

29


	1. Introduction
	2. Basic notions
	2.1. The vacuum Einstein equations
	2.2. Angular momentum
	2.3. Minimal surfaces and the second variation of area
	2.4. Areal and polar coordinates for axisymmetric spheres and further coordinates
	2.5. Homogeneously regular manifolds
	2.6. Minimal surfaces in axisymmetric spaces

	3. Proof of the main results
	3.1. The second variation of area in time for extreme Kerr-throat spheres
	3.2. Proof of theorem 1
	3.3. Proof of theorem 2

	Appendix 
	References

